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ABSTRACT

In higher eukaryotes, alternative splicing is a
common mechanism for increasing transcriptome
diversity. Affymetrix exon arrays were designed as
a tool for monitoring the relative expression levels of
hundreds of thousands of known and predicted
exons with a view to detecting alternative splicing
events. In this article, we have analyzed exon array
data from many different human and mouse tissues
and have uncovered a systematic relationship
between transcript-fold change and alternative spli-
cing as reported by the splicing index. Evidence
from dilution experiments and deep sequencing
suggest that this effect is of technical rather than
biological origin and that it is driven by sequence
features of the probes. This effect is substantial
and results in a 12-fold overestimation of alternative
splicing events in genes that are differentially
expressed. By cross-species exon array compari-
son, we could further show that the systematic
bias persists even across species boundaries.
Failure to consider this effect in data analysis
would result in the reproducible false detection of
apparently conserved alternative splicing events.
Finally, we have developed a software in R called
COSIE (Corrected Splicing Indices for Exon arrays)
that for any given set of new exon array experiments
corrects for the observed bias and improves the
detection of alternative splicing (available at www.
fmi.ch/groups/gbioinfo).

INTRODUCTION

Affymetrix exon arrays are commercially available for
human, mouse and rat. These arrays contain probesets
directed against all known and predicted exons described
at their design times. This is typically in the order of
one million probesets. A probeset typically represents

a single exon, or part of an exon, and is generally
comprised of four oligonucleotides which often show sub-
stantial sequence overlap with one another. In contrast to
earlier Affymetrix 3'-UTR expression arrays, the higher
number and closer spacing of probes within target
sequences made it more difficult to select probes with
similar GC content. As a result, the melting temperatures
of these oligos vary more than was the case before. Also
the independence of their signals is less secure because
many of them overlap substantially because of short
exon lengths. Splice junction oligos have not been
included in the design. Affymetrix has provided the com-
munity with exon array tissue panel data, which may be
freely downloaded in order to facilitate the development
of bioinformatical tools for splicing analysis and to pro-
vide a common reference set for researchers. In addition,
several other large-scale exon studies have been made
publicly available by research labs around the world.
The origin of this study was a simple desire to study the
behavior of oligonucleotide hybridization in complex
mixtures in a hope that it might contribute to our under-
standing of the relationship between fluorescent signal and
input concentrations of nucleic acids. In the course of this
analysis, we observed that the serial dilution of technical
repeats of labeled mouse RNA with labeled Drosophila-
carrier RNA resulted in the detection of splicing events
that could not be biological in origin. Upon examination
of publicly available exon array data sets, we discovered
that the behavior we observed in our dilution experiment
was also clearly detectable in these sets. In this articles, we
set out to describe this phenomenon and to propose some
steps that may be taken to minimize its effect.

One of the earliest attempts to investigate alternative
splicing with microarrays was made using a printed two-
color microarray with oligonucleotides directed against
exon, intron and splice junction regions of the yeast tran-
scriptome (1). In this landmark paper, Clark et al. propose
two scores for observing differential splicing in yeast.
These scores are the splice junction index and the intron
accumulation index. These scores are simply the signal of
the splice junction probes or intron probes normalized to
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the gene-level signal, respectively. As an evolution of this
approach, Clark and colleagues shift to a single color
Affymetrix array platform without junction probes (1),
proposing a splicing index (SI) that normalizes each
exon signal by dividing it by the gene expression level.
They reported, based on the SI, that as many as 73% of
detected genes were alternatively spliced across 16 normal
human tissues (1).

Affymetrix recommends the use of their ANalysis Of
Splice VAriation (ANOSVA) test (2) to apply statistical
rigor to changes in SI. This test constructs a null hypoth-
esis that all interaction terms in a two-way ANOVA are
zero and that no exon probesets are over- or underrespon-
ders when compared with average gene expression. The
alternative assumption is that some interaction terms are
non-zero and Cline ef al. (2) have proposed that this is an
indication of alternative splicing. Cheung and coworkers
(3) went on to propose the use of an alternative SI which
they call the alternative splicing score which encapsulates
both the ANOSVA and SI concepts by scaling the SI using
the within group variance. Xing et al. (4) proposed an
improved model of the gene-level estimate in order to
improve the performance of the splicing index with their
‘microarray analysis of differential splicing’ (MADS).
Rather than using all exons of a gene, they iteratively esti-
mate a gene level based on the Li and Wong (5) linear
model using only the least variant exons. In the
FIRMA approach, Purdom et al. (6) used robust multi-
chip analysis (RMA); (7) to estimate exon levels, and then
additively modeled the expected behavior of an exon rel-
ative to a robust estimate of the gene expression level.
Alternative splicing is proposed as a deviation from the
fitted behavior.

The implicit assumption in all of these methods is that
the gene-fold change and all exon-fold changes should be
equal in the absence of alternative splicing. If correct, then
any deviation from this behavior would be evidence for
alternative exon inclusion. In this study, we show that this
assumption does not apply to exon array data and results
in substantial overestimation of the number of alterna-
tively spliced exons.

MATERIALS AND METHODS
Affymetrix sample preparation

Total KC Drosophila, Stratagene universal human and
Stratagene universal mouse RNA were processed and
labeled using the Affymetrix whole transcript one-cycle
labeling kits as per manufacturer’s instructions. They
were hybridized to Affymetrix Human Exon 1.0 or
Mouse Exon 1.0 arrays, respectively. The arrays were
scanned using an Affymetrix 7G scanner. Background cor-
rection and probeset condensation was performed using
RMA (7). For most of the arrays, we used Affymetrix’s
Power Tools except for the dilution experiments for which
we used exonmap (8) in bioconductor (http://www.
bioconductor.org). Dilution experiments (at 100%, 50%,
25%, 10% and 0% human and mouse RNA) were per-
formed in duplicates, therefore, we hybridized RNA to a
total of 20 exon arrays (10 for each species). One of the
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100% human RNA arrays was an outlier and excluded
from further analysis.

Analysis of deep sequencing data

A total of 224.4 million reads for the tissues brain,
liver and muscle (79.9, 75.8 and 69.8 Mio reads) (9) were
downloaded from http://woldlab.caltech.edu/rnaseq. The
fragments were mapped to the mouse genome (NCBI
Build 37) using the softwares oligomap (10) for zero to
one mismatches and SOAP (11) for two mismatches. We
considered all fragments that mapped less than 100 times
to the genome and weighted them by the inverse of their
number of hits. Expression e; of each exon i (given as
genome coordinates of the exon array probesets) was
quantified by counting tags overlapping the exon (c;)
and correcting for exon length (e; = ¢; x avgExonLength/
exonLength;). After removing all nonexpressed exons
(counts <2), we seclected all genes for further analysis
that had a sufficient number of tags per exon (>16 in all
the samples) to enable reliable estimation of small expres-
sion changes. This resulted in a set of 3804 genes.

Finding homologous probesets in mouse and human

We used whole-genome alignments from UCSC (http://
genome.ucsc.edu/) to determine pairs of homologous pro-
besets (roughly corresponding to exons) in mouse and
human. Given the genomic coordinates of the probesets
(from the Affymetrix exon array annotation files) in
mouse (mm&) and human (hgl8), we tested whether
there are one or more alignment blocks that map >90%
of the mouse probeset to a human one. In cases that linked
one mouse probeset to multiple human candidates, we
selected the one with the highest coverage.

Procedure to remove the bias from exon arrays

We analyzed a pool of 250 publicly available exon array
experiments (training set, downloaded from Gene
Expression Omnibus) to infer linear probeset response
characteristics as follows: for each probeset i, we calcu-
lated the probeset response slope s; using linear regression
in the scatter plot depicting the gene expression and the
splicing index for all 250 samples (examples shown in
Figures 2A and D). Given a new set of array experiments,
we used those probeset response slopes to correct the data
as follows: first, we calculated regular splicing indices SI;
for each probeset i comparing each sample to the average
sample. Then we calculated the ‘projected splicing index’
PSI; for every probeset which is the splicing index that we
would expect if the probeset would react according to the
training data given the gene-fold change g; (PSI; = g;-s)).
The corrected splicing index CSI; was then defined
as the difference between the actual and the PSI
(CSI,; = SI;— PSI;). All calculations were performed in
log2 space. As an improvement to the simple linear cor-
rection model, we further developed a nonlinear model
that is powerful enough to capture probeset saturation
effects observed in Zlgure 2D. We chose to use the func-
tion y = a/d x log(e™™ + ¢~%) + b, which has the asymp-
totic behavior of y = ax + b for small x and y = ac + b
(horizontal) and for large x (Supplementary Figure 1).
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The variable ¢ sets the position of the knee and d para-
meterizes the smoothness of the transition from the linear
part on the left to the constant plateau on the right after
the knee. The parameters ¢ and d have to be set within
certain limits, namely ¢ should be within the range of gene
expressions (gmin and gmax) and d should not be smaller
than 0.2 as this would result in a kink in the function.
Guided by the experimental data (Supplementary
Figure 1), we set the limits of d to be between 0.2 and
0.6. For ecach probesets, we fitted the parameters a, b, ¢
and d by iterating through combinations of ¢ [gmin:0.25
“€max] and d [0.2:0.1:0.6] and performing least squares
to determine @ and b. Once computed, the parameters
were stored and used subsequently to correct novel sets
of array experiments. In order to correct a probeset, we
required that the gene expressions observed in the test
data are within the range of observed gene expressions
of the training data, extended by 2 in log2 space on
both sides.

RESULTS AND DISCUSSION

Systematic relationship between gene-fold change and
the splicing index

Observed changes in the level of an exon can, in principle,
be explained in at least two different ways. Either
the gene’s overall transcription rate has changed, or the
exon’s inclusion rate into mRNA has been altered,
through mechanisms such as alternative splicing, alterna-
tive promoter usage or poly-A site usage. Identification of
alternative exons requires the decoupling of these two
components. If we assume that changes in gene expression
should affect the expression of most of its exons and alter-
native splicing events should occur at a lower frequency
than constitutive exon inclusion, then the splicing index
(12) provides a solution to this decoupling problem. In
logarithmic space, the SI is defined as the log probeset
(roughly representing an exon or a part of an exon)
expression change f; for probeset i corrected by the log
gene expression change g; (SI; = f; — g;). An intuitive gra-
phical representation is given by standard MA plots
depicting all probesets that belong to a particular gene,
where M correspond to the change and A to the average
level of each probeset in the two compared samples.
Figure 1A shows such MA plots for eight representative
genes from an experiment comparing mouse embryo and
brain RNA using Affymetrix mouse exon 1.0 arrays. Two
of the eight selected genes are upregulated, two of them
are downregulated and four appear unchanged in their
expression in embryo compared with brain. The splicing
index is simply the vertical distance between the probeset
expression change and the gene expression change (see
blue annotation in Figure 1A). Inspecting many such
example genes shows a subtle, but systematic, relationship
between the gene expression change and the splicing index.
Genes that show strong changes in expression have
increased splicing index variability compared with their
unchanging counterparts. We quantified this effect for
all expressed genes in a scatter plot comparing the log
gene expression change to the standard deviation of the

Nucleic Acids Research, 2009, Vol. 37, No. 16 el07

splicing indices belonging to probesets of that particular
gene (Figure 1B). To our surprise, we observed a U-shape
relationship that implies that genes changing in their
expression have more variability in splicing indices and
thus would be subjected to more alternative splicing
than genes that do not change their expression. We
repeated this analysis for a series of independent exon
array experiments in human (11 tissues in triplicates)
and mouse (11 tissues in triplicates) from Affymetrix
(http://www.affymetrix.com) and conclude that this phe-
nomenon is general and can be reproduced in all pairwise
expression comparisons (55 cases in human and mouse,
Figures 1C and D). A similar finding is described in (3)
without further characterization. While all these data have
been normalized using RMA, we made similar observa-
tions on data normalized by PLIER (13) (data not shown).
We next wondered whether the phenomenon observed in
the pairwise comparisons would be systematic across
many samples from different tissues. We therefore reana-
lyzed the tissue panel dataset from Affymetrix including
all tissues and calculated splicing indices by comparing
each tissue to the average of all tissues. Figure 2A depicts
the behavior of all the probesets from one example gene
(matrillin 4) across 11 mouse tissues. The probesets in this
gene display a wide range of responses in log—log space:
some increase at a lower rate compared with the gene
(negative slope), others at an equal rate (horizontal), and
yet others increase more than the gene (positive slope). To
get a comprehensive picture, we generated heatmaps
showing the behavior of all the probesets that have high
splicing index variability and reside in genes that change
their expression in the 11 tissues (Figures 2B and C).
Hierarchical clustering grouped the majority of the probe-
sets into only two distinct clusters. Probesets that have
monotonically increasing splicing indices (over respon-
ders) and probesets with monotonically decreasing
splicing indices (under responders).

Additional data from an independent experiment com-
prised of 57 lymphoblostoid cell lines (14) show that the
behavior of individual probesets to a first approximation
can be captured by the slope of a linear regression in log—
log space, from now on referred to as the ‘probeset
response slope’. However, the data also show that in
detail the situation is more complex as overresponding
probesets tend to saturate with increasing gene expression
(Figure 2D).

The origin of the observed bias

We can envision two possible explanations for the
observed dependency between changes in transcription
rate and exon inclusion. It could be either a biological
phenomenon or a technical artifact of the microarray plat-
form. In the case of a biological phenomenon, one might
imagine a global mechanism that couples transcription
rate to exon inclusion. The spliceosome could be influ-
enced by transcription rate and either over or under
include individual exons upon expression change, similar
to the reported ‘kinetic coupling’ between transcription
and splicing machineries [reviewed in (15)]. This model
would be sufficient to explain the data; however it would
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have profound consequences for our understanding of
gene expression. In the case of a technical microarray arti-
fact, we could explain the effect by the known fact that
response curves of individual probes (and thus probesets)
differ significantly [see for example (16)]. As gene expres-
sion increases, the signals of probes would increase with
different rates (in log space) and thus drift further and
further apart. It is known that probes respond in a non-
linear fashion, so this would represent a straightforward
explanation of the observation. It should be mentioned
that gene expression levels can be estimated with high
confidence, as the number of probes for each gene is
large and the slope differences of individual probes are
averaged out. However, for detection of alternative
exons, typically represented by only four (sometimes over-
lapping) probes, such differences are unlikely to be aver-
aged out. The question about the origin of this effect is
essential as it determines whether or not exon array data
must be corrected for the observed bias. If there really is
a massive coupling between transcription and exon inclu-
sion, then no correction procedure should be applied since
it would eliminate biologically important information.

If no such coupling exists then the bias will obscure bio-
logically important information.

Exon array dilution experiments in human and mouse

To gain insight into the nature of the observed bias,
we performed a dilution experiment where we hybridized
different amounts of the same mouse RNA to exon arrays.
This allowed us to experimentally measure the differential
behavior of individual probesets. The downside of a dilu-
tion experiment compared with a spike-in experiment (16)
is that absolute abundance of the quantified material is
not known. Therefore, only relative expression changes
from one dilution condition to the other can be measured.
This was no disadvantage here, as we were mainly inter-
ested in detecting alternative (relative) exon inclusion. The
advantage of a dilution experiment is that it generates
a large number of data points. In principle, with only
two dilution conditions one can measure response slopes
for every probe that belongs to an expressed gene. The
setup of our dilution experiment was as follows: we hybri-
dized 100%, 50%, 25%, 10% and 0% of Stratagene
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universal mouse RNA from a single pool of amplified and
labeled material. To ensure that the total amount of RNA
applied to the chips was always constant (in case of an
effect caused by complexity reduction), we added increas-
ing quantities of labeled Drosophila RNA isolated from
KC cells at 0%, 50%, 75%, 90% and 100%, respectively.
Due to the intrinsic differences in the expression distribu-
tions of individual experiments, only background correc-
tion was performed without quantile normalization. Note
that in this case normalization was actually achieved phys-
ically by putting the same amount of material on the
array. The same process was repeated using Stratagene
human universal RNA diluted with KC Drosophila
RNA. Experiments were performed in duplicates. The
0% mouse RNA (100% Drosophila) was used to identify
and remove all the probes (<4%) that cross-hybridized to
the Drosophila RNA. Figure 3A shows the distributions of
probeset expression changes in 50%, 25% and 10% mouse
RNA samples compared with undiluted (100%) mouse
RNA. We can see that the array provides a good read
out of the expected average gene-level expression changes.

In the case of 50%, 25% and 10% dilution, the probesets
go down approximately by —1, —2 and —3.3 respectively
(in log2 space). To avoid saturation and boundary effects
at the lower and upper expression range, we rigorously
excluded those probesets from the analysis. Interestingly,
in Figure 3A, we can see that the variance of the expres-
sion changes increases with higher dilution (more variance
at lower mouse RNA concentrations). This would be
consistent with the idea that intrinsic differences in the
probe response slopes exist as no alternative splicing can
exist in our dilution experiment. Using linear regression,
we summarized the behavior of each oligonucleotide
across all dilution conditions by its slope (experimental
probe response slope).

Probe response slope predictor based on a positional
dinucleotide model

We speculated that there might be intrinsic sequence
features of the probes that could determine their response
behaviors. Therefore, we trained a positional dinucleotide
model [similar to (4,17)], using the experimentally
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experimentally measured probe slopes from the dilution experiments. Position 24 represents the end of the probe that is attached to the surface of the
microarray for mouse and human, respectively. Red color denotes positive contribution to the slope (overresponding) whereas blue denotes negative
contribution (underresponding). The scatterplots in (D and E) show a comparison of the probeset response slopes either predicted by the dinucleotide
model (x-axis) or determined by linear regression from the Affymetrix tissue panel data (y-axis) for mouse and human, respectively. Probe response
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probeset in question.

determined probe response slopes from the dilution exper-
iment as input. The positional dinucleotide model assumes
that the behavior of a probe can be modeled by a posi-
tional contribution of its dinucleotides. We used a linear
regression model converting the categorical dinucleotide
variable with 16 states into 15 dummy variables. Since
the probes have a length of 25nt (24 dinucleotides), this
resulted in a linear system of equations with 15 x 24 + 1
variables where the last variable represents a constant. To
avoid entanglement of neighboring dinucleotides
(resulting in an ill-conditioned system of equations), we
trained two models, one containing the dinucleotides at
even probe positions and one with those at odd positions
(15x 12 + 1 =171 variables with >400000 equations in

mouse and human). The final predictor was the average
of these two models. After least squares optimization,
we obtained the parameters of the model which represent
the importance or contribution of every dinucleotide as
a function of its position. Figures 3B and C show heat
maps with the parameters obtained from the mouse and
human dilution experiments, respectively. The dinucleo-
tide parameters demonstrate that there exist sequence
features predictive for probe response characteristics.
CG-rich probes tend to be underresponders whereas
AT-rich ones tend to be overresponders. Additionally,
we can see that the end of the probe (attached to the
surface) is generally less informative indicating that
there might be reduced hybridization, possibly due to
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Figure 4. Relationship between transcript-fold change and the splicing index in deep sequencing data. (A and B) scatter plots derived from deep
sequencing data (9) comparing the log2 gene expression change (x-axis) to the standard deviation of the splicing indices belonging to exons of that

particular gene (y-axis).

steric hindrance. This finding could be used to improve
cross-hybridization prediction algorithms by either down-
weighting aligned nucleotides at the end or truncating the
probes and to only use, e.g. the first 18-20nt for align-
ment. Compared with internal dinucleotides, the very first
one shows a distinct but informative pattern that is also
consistent between mouse and human. We speculate that
this could reflect distinct electron charge localization
differences in this position because the base is bounded
on one side by a free hydroxyl group rather than a phos-
phodiester bond to another nucleotide, which may affect
base pairing, base stacking, or both.

Comparing the dinucleotide model with the Affymetrix
tissue panel data

We wondered whether the dinucleotide model was power-
ful enough to recapitulate the probeset response slopes
that we had previously observed in the Affymetrix tissue
panel data (Figures 3D and E). Note that the dilution
experiment by definition was devoid of alternative exons
since a single source of material was hybridized multiple
times at different concentrations. Therefore, the dinucleo-
tide model was not confounded by alternative exon inclu-
sion. Comparing the probeset response slopes predicted by
our model with the slopes obtained from the Affymetrix
tissue panel data, we detected a highly significant correla-
tion both in mouse and human (Pearson correlation coef-
ficient in mouse 0.528, P <<2.2 x 107'°, and in human
0.468, P<<2.2x 107'%). This demonstrates that a sub-
stantial part of the observed effect originates from a tech-
nical aspect of the microarray platform and not from a
biological phenomenon. Since the correlation between
predicted and observed exon slopes is rather weak, we
cannot rule out the possibility that at least some of the
effect is biological in nature.

Comparing exon arrays with deep sequencing data

Very recently, deep sequencing (RNA-seq) has emerged as
a competing transcriptome profiling technology. In con-
trast to microarray technology, no probes have to be

designed for detection of mRNAs. Briefly, input material
is fragmented, ligated to adapters and a large number
of molecules are sequenced in parallel. This results in
millions of sequence tags that are annotated by mapping
them to a reference genome. Expression of a particular
stretch of DNA is measured by simply counting the tags
that map within the region of interest. Since this method is
radically different from microarray technology, a compar-
ison of those two would provide additional information
about the origin of the bias that we observed in exon array
data. Unfortunately, accurate quantification of individual
exon levels requires an enormous number of sequenced
tags, as most exons are short and tag counts per exon
have to be high enough to overcome sampling noise.
Recently, a large RNA-seq study (9) was published that
analyzed mouse brain, liver and muscle samples at suffi-
cient depth using an Illumina Genome Analyzer instru-
ment. To stay as close as possible to the setup of the
exon array, we used identical coordinate annotations
(core set, sece Methods section). Finally, we seclected
genes for further analysis that had a sufficient number of
tags to ensure reliable estimation of expression changes.
The key question we wanted to answer was whether the
U-shape relationship between gene expression change and
standard deviation of splicing indices (Figure 1B) also
exists when using deep sequencing data. Figure 4 shows
that this is not the case. Together with the evidence from
the dilution experiment, this strongly suggests that the
characterized exon array bias is purely technical and
does not even partially originate from a biological
phenomenon.

Comparing exon array data across species boundaries

The positional dinucleotide model indicated that probeset
characteristics (slopes) can be explained at least in part
by simple sequence features. We, therefore, wondered
whether such features could be conserved between species,
which would result in the reproducible false detection of
apparently conserved alternative splicing events. To test
this, we used whole-genome alignments between human
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Figure 5. Cross-species exon array comparison. (A) A scatter plot comparing mouse to human probeset response slopes (determined from the
tissue panel data). Mouse probesets were linked to their human homolog counterparts using whole-genome alignments (see Methods section).
(B) A comparison of mouse and human exon response slopes based on the predictions from the positional dinucleotide model.

and mouse to link mouse probesets to their human homo-
log counterparts (see Methods section), and compared
mouse probeset response slopes obtained from tissue
panel data with corresponding human ones. Figure 5A
illustrates that slopes of matching probesets were indeed
correlated (Pearson correlation coefficient of 0.426,
P<<22x107"). This could have been expected since
homologous exons typically display substantial sequence
similarity. We tested this directly by comparing predicted
response slopes of homologous mouse and human probe-
sets, derived from the dinucleotide model trained for each
species. As expected, predicted exon response slopes were
correlated between mouse and human (Pearson correla-
tion coefficient of 0.588, P<<2.2x 107!, Figure 5B).
This has profound implications in the context of cross-
species exon array studies. If we profiled matching tissues
in mouse and human and asked whether or not there was
any conservation at the level of alternative splicing then
because the technical response behavior of homologous
exons is similar, we would expect to see a significant agree-
ment when comparing splicing indices between the two
species. In other words, this means that without taking
this bias into account, one would always detect a signifi-
cant number of conserved alternative splicing events even
if not present in the samples.

Avoiding and correcting the characterized bias

Having characterized the extent and origin of this system-
atic bias in exon array data, it is important to determine
how to best identify true alternative exons. We will outline
four possible approaches that could be applied depending
on experimental design and amount of data. The simplest
approach is to avoid the artifact by filtering out differen-
tially expressed genes from the analysis (12,18). Based on
the U-shaped curves in Figure 1, it is possible to identify
a range of tolerable gene-fold changes that do not display
a bias in splicing indices. For example, all curves are
almost flat for genes that do not change more than
2-fold (between —1 and +1 in log space. Filtering may,
however, be undesirable if alternative exons need also to

be detected in differentially expressed genes. A second pos-
sibility would be to train a model that predicts probe
response slopes based on probe sequence, similar to the
positional dinucleotide model presented here. A substan-
tial amount of the artifact can be explained by probe
sequence features alone, as discussed above. We think,
however, that the prediction accuracy of at least our posi-
tional dinucleotide model is not high enough to enable
robust correction of the data (Figures 3D and E). In
most cases, the most accurate correction will be achieved
by inferring response characteristics for each probeset
directly from exon array data by regression and use this
to correct observed splicing indices as a function of gene-
fold change. In contrast to the positional dinucleotide
model for slope prediction, this approach can only be
applied when there are many samples analyzed to accu-
rately estimate probeset response slopes. For example, this
approach could be applied to the Affymetrix human
and mouse tissue panel datasets, that each contain 11 dif-
ferent tissues, while it would not be robust when applied
to data with just two or three different tissues. Finally,
we observed that probeset response slopes estimated
by linear regression from a training set of 250 arrays cov-
ering a large variety of tissues (downloaded from Gene
Expression Omnibus) correlate well with those from an
independent set of 171 lymphoblastoid cell line samples
(14) (Pearson correlation coefficient of 0.92, Figure 6A).
This illustrates that probeset response slopes are robustly
and consistently inferred across experiments from different
laboratories, which opens the possibility to globally esti-
mate them from a pool of all publicly available exon array
data. These estimated slopes could then be used in the
correction of any future experiment independent of the
number of analyzed samples (see Methods section).
We believe that this approach is the preferred correction
method because of its accuracy and robustness. We thus
applied this procedure to another independent dataset
(19) comparing universal Human Reference RNA with
human brain reference RNA (10 technical replicates
each). Figure 6 illustrates the dependency between
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change.

gene-fold change and splicing index variation, before and
after applying the correction (panels C and D, respec-
tively). The U-shaped dependency is to a large extent
eliminated by the correction. As an improvement to the
linear correction approach, we developed a nonlinear vari-
ant called COSIE (COrrected Splicing Indices for Exon
arrays, available at www.fmi.ch/groups/gbioinfo), which
is capable of capturing saturation effects of the probesets
(Supplementary Figure 1). We applied both correction
methods to the test data and counted the number of sig-
nificant alternative exons (z-test for each probeset,
P < 107°). The linear correction method reduced the over-
all number of significant alternative exons by a factor of
three and by a factor of six for genes changing at least
4-fold (Figure 6B). COSIE reduced the overall number
by a factor of 4.4 and 11.9 for genes changing at least
4-fold. This shows that the described exon array bias
when not corrected for results in a massive overestimation
of alternative exons. The downside of this approach is that

response behavior cannot necessarily be estimated for all
probesets on the microarray. It is required that probesets
are detectable and associated to a gene with a sufficient
dynamic range in the training data. Based on our training
set, COSIE corrects 95.1% of the 222 858 probesets in the
test set. With the publication of additional exon array
experiments, the training set will grow and this number
will further increase in the future.

CONCLUSIONS

We have characterized a technical bias of Affymetrix
exon arrays that plays an important role in identification
of alternative exons for differentially expressed genes. For
similar samples with only few differentially expressed
genes, this effect is strongly reduced, even though not
absent. The effect is driven by differences in the response
curves of individual microarray probes and can be
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partially explained by simple sequence features. These
sequence-specific response characteristics are independent
of the array design as similar response characteristics
were observed for both human and mouse arrays.
Gene expression levels can be robustly estimated on
exon arrays, presumably because the signal for each
gene is condensed from a large number of probes resulting
in the different response characteristics of individual
probes to be diluted. However, for identification of
alternative exons, relying on exon levels typically mea-
sured from only four probes, the distinct behavior of
individual probes plays an important role. We have
shown that this is a global phenomenon that applies
equally to mouse and human exon arrays and its magni-
tude is sufficiently large that it accounts for an important
fraction of the observed significant alternative exons.
Based on a dilution experiment and by comparison with
deep sequencing data, it can be concluded that this effect
is primarily of technical rather than of biological origin.
Finally, we have developed a software in R called COSIE
that for any given set of new exon array experiments cor-
rects for the observed bias (available at www.fmi.ch/
groups/gbioinfo).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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